Гравитационный локатор.

Чтобы просмотреть толщу пород и определить их плотность необходимо произвести измерение гравитационных ускорений в сторону этих пород, что потребует изменения направления оси чувствительности акселерометра при сканировании. Просто изменение направления оси чувствительности акселерометра не разрешает неоднозначность: с какого направления пришел сигнал, с прямого или обратного. Для разрешения неоднозначности необходимо разнести измерения в пространстве на расстояние d, достаточное для того, чтобы при существующей чувствительности были видны различия в прямом ( g) и обратном сигнале ( g`)(фиг.1).

лок.фиг.1

Это разнесение осуществляется поворотом акселерометра (1), установленного на кронштейне (2), вокруг оси вращения (3) с радиусом d/2. В изобретении применено механическое сканирование акселерометром окружающего пространства (фиг.2) по азимуту и углу места.

фиг.2

За один оборот антенны сканируется одна строка переднего плана и одна строка обратного плана. Строки соединяются в кадры с помощью вертикального сканирования.Изобретение основано на использовании эффекта приливной волны создавать зону повышенного ускорения во фронте и зону пониженного ускорения на спаде при прохождении точкой, находящейся на поверхности вращающегося тела, направления, соединяющего центр вращения и направление на объект . Приливная волна возникает в акселерометре, вращающемся в гравитационном поле объекта (4), когда его ось чувствительности проходит направление на объект. Диаграмма направленности локатора проходит через ось вращения и акселерометр и имеет два направления: прямое и обратное. Прямое направление используется для обработки и протоколирования измерений, обратное направление используется для исключения его влияния на измерения по прямому направлению. Измерения по прямому и обратному направления связаны корреляционной зависимостью, все что выходит за пределы этой зависимости рассматривается как сигнал мешающий измерениям по прямому каналу и их влияние вычитается из измерений по прямому каналу. Путем последовательных приближений вычисляется истинное значение параметра по прямому направлению. Гравитационные ускорения по заданному направлению вычисляются по математическому аппарату гармонического анализа, основываясь на вычисленных параметрах приливной волны по прямому направлению. При расчетах производится учет приливных ускорений Солнца и Луны, а так-же влияние самой приливной волны Солнца и Луны на результаты измерений.Гравитационный локатор (фиг.2)включает в себя карданов подвес (5), установленный на платформе(6), стабилизированной в пространстве относительно горизонта, с установленным в нем двигателем горизонтального привода диаграммы направленности (7), вращающем кронштейн, с находящимся на нем пьезоэлектрическим акселерометром. Измеренные датчиком параметры преобразуются аналого-цифровым преобразователем (9) в двоичный код и по бесконтактному каналу передаются передатчиком (10) на приемник (11), установленный на платформе. Вертикальный привод диаграммы направленности производится путем вращения кардана подвеса через шестерню привода от двигателя (12), установленного на платформе. Углы поворота горизонтального и вертикального приводов преобразуются кодовыми преобразователями угла горизонтального (13) и вертикального (14) приводов в двоичный код и вводятся в ЭВМ (15). [фиг.3]

фиг.3

Данные от приемника по витой паре (16) так-же вводятся в ЭВМ. Обработка результатов измерений производится на ЭВМ, обработанные измерения выдаются на монитор (17) в виде строчной и кадровой развертки с градацией по яркости и по цветам.

Ниже описывается признак, позволяющий измерять гравитационное приливное ускорение по заданному направлению при прохождении оси чувствительности вращающегося акселерометра относительно объекта исследования. На чертеже [фиг.4] изображен пример исследования небесного тела (1), представляющего из себя шар с плотной поверхностью и полый внутри. Гравитационный локатор имеет на вращающейся антенне (2) акселерометр (3) с диаграммой направленности (4), представляющей из себя телесный угол с размерами Δα по горизонтали и Δβ по вертикали. Пьезоэлектрические акселерометры имеют чувствительность 1 mv/g; поперечную чувствительность < 5%; частотный диапазон 0,5 20000 gz., что позволяет использовать их в качестве чувствительного элемента для измерения гравитационных приливных ускорений в антенне гравитационного локатора. Взаимодействие пробной массы акселерометра (пьзоэлемента) и гравитационных масс окружающего пространства осуществляется посредством гравитационных волн, существование которых наукой доказано (11 февраля 2016 года). Средой в которой осуществляется взаимодействие является физический вакуум ( плотность 400 500 фотонов на см.^3; T = 2,725 K; F = 160 Ггц.). Гравитационные волны излучает любое тело, совершающее асимметричное движение в гравитационном поле. Вращающаяся пробная масса акселерометра излучает гравитационные волны промодулированные частотой вращения антенны. Сигнал, отраженный от гравитационных масс окружающего пространства воспринимается пробной массой только в том случае, если он пришел от гравитационных масс находящихся в диаграмме направленности акселерометра. Таким образом акселерометр является и генератором гравитационных волн (Fв= F + ω2 -верхнее значение полосы частот ; Fн = Fω2 -нижнее значение полосы частот, где ω2 -угловая скорость вращения антенны) и их детектором.

В соответствии с законом всемирного тяготения тело (2) притягиваются к телу (1) с ускорением, которое рассчитывается по формуле:

a2 = G*M1/R^2[1]

где:
G -гравитационная постоянная
М1 -масса небесного тела
R — расстояние до небесного тела

Акселерометр в результате своего вращения измеряет в том числе и кажущееся гравитационное приливное ускорение. Причиной этого являются различия градиента ускорения в точках антенны разноудаленных (R+R2 — при удалении и R-R2- при приближении, где R2- отстояние акселерометра от центра вращения антенны) от источника притяжения массой (М1). Через эти точки акселерометр проходит во время вращения, измеряя в них повышение и понижение ускорения.

По своей физической сути приливное ускорение (w) является производной от ускорения по расстоянию.

w2 = а2` = f ( R )` [2]

Возьмем производную выражения [1] по расстоянию (для наглядности берется только первая производная) и получим:

w2 = (a2)` = -2G1*M1*(R)` /R^3 [3]

где:

G1— гравитационная постоянная при первой производной приливного ускорения.

Из анализа выражения [3] очевидно, что приливное ускорение находится в обратной зависимости от куба расстояния (не от квадрата) и расстояние это не до центра другого взаимодействующего тела, а до области ближе расположенной к поверхности тела. Фактически взаимодействие определяется взаимодействием поверхностных масс обращенных друг к другу и можно допустить, что эти массы вращаются по радиусам близким к радиусу тел. Изменение расстояния между этими взаимодействующими массами в процессе вращения можно выразить как:

δR = R1* cos (ω1* t+ φ1) — R2cos(ω2* t+ φ2) [4]

где:

ω1 — угловая скорость вращения небесного тела;
φ1 — начальный угол вращения небесного тела ;
R1 — радиус небесного тела;

ω2 — угловая скорость вращения акселерометра;

φ2 — начальный угол вращения акселерометра;

R2 — радиус вращения акселерометра антенны локатора;

производная от выражения [4] будет:

где: (R)` = [R1* cos (ω1* t+ φ1) — R2cos(ω2* t+ φ2) ] ` [5]

Выражение [5] является сложной функцией из-за наличия членов вида (cos ωi*t + φi )` = ωi *sin (ωi*t + φi)
Для простоты понимания берется только первая производная по времени, однако на практике могут быть взяты и производные других порядков и составлены тригонометрические ряды из них.

( R)`= [ — R1*ω1* sin (ω1* t+ φ1) + R2*ω2*sin(ω2* t+ φ2)] [6]

w = 2G1*M1*[ R1*ω1* sin (ω1* t+ φ1) — R2*ω2*sin(ω2* t+ φ2)]/R^3 [7]

где: G1- гравитационная постоянная для первой производной ускорения, которая зависит от плотности распределения материи в обследуемом объекте в отдельной его части, подвергающейся исследованию. Именно её изменение при прохождении диаграммы направленности вдоль поверхности обследуемого объекта и позволяет просматривать глубинные аномалии. Эту величину предлагается назвать «коэффициентом приливной волны», так как способность поверхности тела к возбуждению стоячей приливной волны, в основном, определяется уменьшением плотности материи с приближением к поверхности.

Анализ полученного выражения [7] и чертежа [1] показывает , что приливное ускорение зависит от масс отдельных частей объекта исследования, находящихся в телесном угле по направлению оси чувствительности акселерометра в пределах диаграммы направленности. Ускорения от других частей исследуемого тела акселерометр воспринимать не будет, так как они не попадают в его диаграмму направленности. Диаграммой направленности акселерометра является кардиоида, которая позволяет производить пеленгацию с достаточной точностью, о чем свидетельствует использование антенн с диаграммой направленности типа кардиоида в радиопеленгации. В результате сканирования пространства образуется поле измерений приливных ускорений. . В ЭВМ гравитационного локатора производится привязка уровня сигнала приливного ускорения к уровням яркости экрана монитора. Максимальному уровню сигнала ускорения соответствует уровень черного; минимальному уровню сигнала ускорения соответствует уровень белого. Результаты обследования тела отображены на мониторе (5). Из чертежа видно, что наиболее темными выглядят области контура шара, так как в диаграмму направленности попадает более значительная часть массы материи шара чем в центре.

фиг.4

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.