Сила гравитационных волн. Часть 1.

УДК 53.02

Эпиграф:   «А видел ли слона? Каков собой на взгляд!
           -Я чай, подумал ты, что гору встретил?»
           -«Да разве там он?»
           -«Там».
           -«Ну, братец, виноват:
           -Слона-то я и не приметил».

                     И. Крылов,(басня «Любопытный»), 1814 г.

 

Введение.

О силе гравитационных взаимодействий лучше всего рассказывает сообщение лаборатории LIGO об открытии гравитационных волн [4]:

14 сентября 2015 года в 09:50:45 UTC два детектора гравитационно-волновой обсерватории лазерного интерферометра одновременно наблюдали переходный гравитационно-волновой сигнал. Сигнал распространяется вверх с частотой от 35 до 250 Гц с пиковой деформацией гравитационных волн 1,0×10-21. Он соответствует форме волны, предсказанной Общей Теорией Относительности для инспирации и слияния пары черных дыр и кольцевого спада результирующей одиночной черной дыры. Сигнал наблюдался при отношении сигнал / шум согласованного фильтра 24 и частоте ложных тревог менее 1 события на 203 000 лет, что эквивалентно значению, превышающему 5,1σ. Источник лежит на расстоянии светимости от 410(+160/−180) ПДК соответствует красному смещению z=0.09(+0.03/−0.04). В исходном кадре, начальная черной дыры массы 36(+5/−4)МCи 29(+4−4)МC и окончательная масса черной дыры составляет 62(+4−4)МC, с 3.0(+0.5−0.5) MС*c^2 излучается гравитационными волнами. Все неопределенности определяют 90% достоверных интервалов. Эти наблюдения демонстрируют существование двойных систем черных дыр звездной массы. Это первое прямое обнаружение гравитационных волн и первое наблюдение бинарного слияния черных дыр.

От автора: наблюдения гравитационно-волнового события GW150914 проводились для доказательства существования гравитационных волн, предсказанных А.Эйнштейном, как гравитационных волн, возникающих при слиянии черных дыр. Другие гравитационные волны (в том числе от ближайших источников) лабораторию LIGO не интересовали и отсеивались специальными фильтрами. Три массы Солнца ушло в гравитационные волны, а это около пяти процентов от исходной массы.

Актуальность.

Основной вопрос читателей к автору при комментировании его статей, посвященных гравитации, заключается в том, каким образом слабые гравитационные волны могут производить самые грандиозные события во Вселенной.

Цели, задачи, материалы и методы.

Целью статьи является доказательство того, что гравитационным волнам доступны самые грандиозные события во Вселенной. Для этого рассматривается вопрос происхождения гравитационных волн и показываются на уже известных фактах особенности распространения гравитационных волн, позволяющие им производить все взаимодействия во Вселенной и оставаться практически незаметными для наблюдателя. Задачей является объединение гравитационного, электрического и магнитного поля в единое поле.

Научная новизна.

Попытка объединения гравитационного, электрического и магнитного поля в единое поле практически сделана П. Н. Лебедевым, доказавшим давление света. Автор статьи предлагает свой взгляд на природу этого давления и объясняет его как гравитационную составляющую единого поля, направленную по вектору Умова-Пойнтинга.

Гравитационные волны в теории гравитации — это свободные колебания гравитационного поля, через которое осуществляется гравитационное взаимодействие между всеми материальными телами.

Происхождение гравитационных волн относится к процессу передачи энергии в мире бесконечно малых частиц. В реальной вселенной частицы существуют только в виде вихрей и при рассмотрении их взаимодействия подход к ним должен соответствовать взаимодействию вихрей.  Представим себе две гипотетические бесконечно малые частицы.  Ускорения при передаче энергии между частицами близки к ускорениям неупругого соударения. Схема передачи энергии (рис.1) рассматривается на примере передачи тепловой энергии от горячей частицы (1) к холодной частице (2) после Большого взрыва.
грав.

 

Рис. 1 Образование гравитационных волн.

Более плотной и горячей частице (1) противостоит холодная частица низкой плотности. Эти параметры получены частицей (1) в «черной дыре» Вселенной. Частица (2) представляет собой реликтовую частицу космоса, которая является частью реликтового излучения космоса. Частица (2) появилась в Большом взрыве другой вселенной, а в настоящем взрыве она не участвовала. Параметрам этой частицы присуща низкая плотность и температура, близкая к абсолютному нулю. При контакте этих двух частиц происходит расширение частицы (1) и сжатие частицы (2), что вызывает перемещение частицы (2) в сторону от частицы (1), что является началом гравитационной волны, которая будет распространяться в реликтовом гравитационном излучении космоса. Возникшее ускорение — самое большее из возможных во Вселенной. Оно представляет сигнал по форме близкий к прямоугольной (рис.1, b). Получив ускорение, частица (2) движется по инерции, представляя часть гравитационной волны. Скорость частицы  ограничена только той реальностью, что самая горячая и самая холодная частицы никогда не встретятся.

Принцип суперпозиции (наложения) волн: в линейной среде волны распространяются независимо друг от друга, так что результирующее возмущение в какой либо точке среды при одновременном распространении в ней нескольких волн равно сумме возмущений, соответствующих каждой из этих волн порознь [1, c 289].

S = Σ Si ; V = Σ Vi ; a = Σ ai

Si, Vi, ai — значение смещения, скорости, ускорения, которые имели бы рассматриваемые частицы в тот же момент времени (t), если бы в среде распространялась одна только i-я волна.

В упругой среде физического вакуума гравитационные волны разных частот имеют разную скорость распространения и форма спектра гравитационного сигнала меняется (рис.2).

изм.

 

Рис.2 Изменение формы гравитационного сигнала из прямоугольного при соударении двух частиц (t1) в несинусоидальный сигнал (t2) с течением времени при распространении гравитационных волн в физическом вакууме.

Основываясь на принципе суперпозиции волн и разложения Фурье, можно заменить любую несинусоидальную волну эквивалентной системой синусоидальных волн.

замена

 

Рис.3 Замена несинусоидальной волны эквивалентной схемой синусоидальных волн. Сохранено обозначение величин, приданных автором [2].

Затухание составляющих сигнала высоких частот относительно составляющих низких частот, по мнению автора, происходит по той причине, что событий генерирующих помехи на высокой частоте во вселенной гораздо больше, чем событий генерирующих низкие частоты. Низкие частоты генерируются событиями уровня GW150914, что довольно редкое событие.

затухание

 

Рис.4 Затухание сигналов различных частот. Сохранено обозначение величин, приданных автором [2].

 

Подобное затухание происходило и при наблюдении сигналов события GW150914. Основное взаимодействие при столкновении «черных дыр» происходило приливными ускорениями на частоте колебаний физического вакуума. Лишь в момент непосредственного контакта взаимодействие перешло в режим соударения и взаимодействие происходило на более высоких частотах и скоростях гравитационных волн превышающих скорость света. Внутри «черных дыр» физического вакуума нет, поэтому и нет ограничений на частоту и скорость гравитационных волн.

С увеличением длины волны в n-раз уменьшается в n-раз и приливное ускорение, согласно общей формуле приливных ускорений, предлагаемой автором [3]:

           2* R11* sin (ω1* t+ φ1)

w2  =      -------------------------           (1)
                      R 3

G1-гравитационная постоянная при первой производной;
ω1-частота вращения;
φ1-начальная фаза вращения;
M1-масса частицы;
R1радиус частицы;
R-расстояние между центрами частиц;
t-время

Сигнал на частоте приема детектором LIGO (ωL=250 Gz) был слабее сигнала на частоте колебаний физического вакуума (ωH=160,4 GGz) в n-раз уже в момент события GW150914.

n=160,4 10Gz /250 Gz=6,4 10раз.

С тех пор сигнал на частоте (ωH) был ослаблен пройденным расстоянием значительно больше, чем сигнал на частоте (ωL).

Линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами для свободных колебаний с затуханием имеет вид [2, c 95 ]

d2y           dy
—-    + p ——   + qy = 0       (2)
dt2            dt

где:

p=λ /Q ; q=k/Q;

Q— масса;

λ,k- положительные числа, но не независимые, они имеют между собой зависимость в виде частоты колебаний;

к — характеризует действующую силу в механических колебаниях. В данном случае она характеризует гравитацию и пропорциональна массе;

λ-характеризует силу сопротивления в механических колебаниях. В данном случае она будет характеризовать сопротивление массе физического вакуума;

Корнями уравнения (2) являются:

k1= — p/2 + (p 2/4- q)1/2 ; k2= — p/2 -(p2/4- q)1/2

при p     0 ;   p 2/4 < q   корни характеристического уравнения — комплексные числа.

k=α+iβ;    k2=α — iβ

α =- p /2 < 0;    β = (q -p 2/4)1/2

Амплитуда сигнала имеет вид y=A e αt sin (βtφ0)  (3)

где:

β-угловая скорость вращения (обозначение оригинала);
φ0— начальная фаза сигнала;

В формуле (3), характеризующей ослабление, угловая частота  входит уже в показатель ослабления (α*t = R*ω*t).

где
R-радиус фотона физического вакуума.
ω — угловая частота сигнала, передаваемого через вращение фотона

Фотоны физического вакуума находятся на орбитах друг у друга и любое гравитационное воздействие на фотон вызывает изменение его орбиты, а следовательно и изменение его скорости вращения. В силу инерционности фотона (массу он несомненно имеет), сигналы высоких частот ослабляются сильнее чем сигналы низких частот.

αH*t /αL*t = R* ωH*t/ R*ωL*t= n

где:
αH— скорость при передаче сигнала высоких частот;
αL— скорость при передаче сигнала низких частот;
ωH-угловая частота сигнала высоких частот;
ωL —угловая частота сигнала низких частот;

Тогда общее относительное ослабление сигнала высоких частот относительно низких составит:

N=n*e n6,4 108е  640000000раз.

Число настолько велико, что встроенный калькулятор «
Windows-10» его не может вычислить.
Именно приливные ускорения на гармонике 160,4GGz сопровождают взаимодействия и они в (n=6,4 10разраз превышают взаимодействия на частоте 250 Gz, которая до нас доходит, двигая 50-килограммовые зеркала детектора LIGO . За время пути сигнал на частоте колебаний физического вакуума (ωH) ослабляется в (е  640000000 ) раз относительно сигнала принимаемого детекторами LIGO (ωL=250 Gz). При этом сам сигнал на частоте (ωH) в момент события GW150914 был относительно сильнее сигнала (ωL) принятого детекторами LIGO в (6,4 10*е 640000000 )раз. Абсолютное ослабление самого сигнала (ωL) при распространении не рассматривается и не учитывается, а оно тоже очень велико.

Большинство дефекта массы (3 массы Солнца) события GW150914 ушло на смещение массы физического вакуума в виде гравитационных волн на частоте (ω=160,4GGz)и вышено до нас гравитационная волна не дошла по причине сильного рассеивания  этой частоты (N= eраз относительно частоты приема (ω=250 Gz.) и ослабления из-за разности частоты излучения и частоты приема (n= 6,4 10раз).
Следует сказать, что частота гамма-излучений превышает частоту колебаний физического вакуума еще на десять порядков (n= 6,4 1018)

Зато гравитационные волны от проходящего в пяти километрах тепловоза, даже ослабленные в (nраз из-за разности частот излучения и приема, тем не менее достаточны, чтобы сделать невозможными наблюдения на частоте 250 Gz., но «слона» из басни И. Крылова никто и не хочет примечать.

Рассмотрим силы, действующие при образовании гравитационной волны, более подробно. Для упрощения, допустим, что взаимодействующие частицы не имеют вращения.  (рис.5)

После получения ускорения частица (2), получившая смещение массы, будет двигаться по инерции пока не столкнется с частицей-мишенью (3) (рис.5.a). Если частица (3) находится на продолжении луча исходящего из частицы (1) и проходящего через частицу (2), то в результате ударного взаимодействия момент движения будет передан частицей (2) частице (3) и она получит ускорение (g), которое будет передаваться дальше в виде гравитационных волн. В случае, если частица (3) не находится на продолжении луча, то частица (2) получит момент вращения в плоскостях (e) и (h), ортогональных к лучу (g). Вращение в плоскости (e) является основным моментом инерции и характеризует электрическую составляющую единого поля, а вращение в плоскости (h) является вращением вокруг промежуточной оси и характеризует магнитную составляющую единого поля. Электрическое и магнитное поля появляются вследствие гравитационного взаимодействия частиц (q=k/Q) и лишь отражают результат гравитационного взаимодействия.
При наличии смещения тела (3) в обеих плоскостях и применяя к полученным угловым скоростям (e2) и (h1) правило «левой руки» можно заметить, что полученное при ударе ускорение (g3) направлено в сторону противоположную первоначальному ускорению (g) (рис.5.b) Это ускорение будет характеризовать сопротивление упругой среды физического вакуума (p=λ /Q).

образ.

 

 

 

 

Рис.5 Образование электрического и магнитного полей.

 

С момента появления вращения частиц, взаимодействие их целесообразно рассматривать по закону гравитационной индукции «Взаимодействие вращающихся тел». Движение представляется движением по инерции в физическом вакууме, частиц вращающейся вокруг смещенного центра массы. Уже на втором соударении бесконечно малая частица начинает существовать в виде бесконечно малого вихря. Автор полагает, что существовать в виде частицы и не иметь вращения бесконечно малая частица может только в явлении сингулярности, когда вращение становится невозможным. Происходит это по той причине, что центр тяжести частицы смещается ниже метацентра из-за приливного ускорения вызванного увеличивающейся массой черной дыры (dM/dR) и частица приобретает устойчивость к вращению. Вращение переходит в затухающие колебания маятника. Причиной взрыва сверхновых звезд является отсутствие возможности у черных дыр внутри них в увеличении массы из-за ограниченности количества материи внутри звезд. Черная дыра вселенной располагает существенно большими возможностями, но и для нее есть определенный предел из-за конкуренции с черными дырами других вселенных. При появлении такого предела маятниковые колебания усиливаются, переходят во вращение и появляется сильное, а затем и слабое взаимодействие, ведущее к взрыву.
В той или иной мере процесс образования гравитационных волн происходит внутри любой элементарной частицы, что объясняет особенности её поведения. И внутри нуклонов и внутри электронов присутствуют гравитационные волны очень высоких частот, которые для современного наблюдателя недоступны. Энергия этих частот очень велика, но быстро убывает с увеличением расстояния. Ускорения, с которым взаимодействуют бесконечно малые частицы не обратно пропорционально квадрату расстояния (закон И. Ньютона), а обратно пропорционально расстоянию в степени (2+n) – где (n)-порядок гармоники, на которой происходит самое интенсивное взаимодействие. Вне элементарных частиц гравитационные волны представлены гармониками низших порядков, которые медленнее затухают. Вне физических тел гармоники еще ниже и их действие сводится к известному закону И. Ньютона и первых производных от него. В качестве примера приводится рисунок силовых линий магнитного поля, взятый из интернета (рис. 6). При потряхивании поверхности покрытой железными опилками вблизи магнита происходит появление рисунка силовых линий. Опилки занимают орбиты относительно гравитационного поля магнита и гравитационных полей соседних опилок. Движутся при этом они в соответствии со смещением масс, которое вызывают магнитное и электрическое поля. Происходит это потому, что при гравитационном взаимодействии гравитационных волн магнита и гравитационных волн опилок происходит стягивание опилок в зоны минимальной гравитационной напряженности гравитационных волн, при этом максимальная напряженность первой волны находится в самом магните, а минимальная напряженность на поверхности магнита.


магн.

Рис.6 Силовые линии магнитного поля, они же гравитационные волны.

На рисунке явно видно возрастание длины преобладающей волны гравитационного поля, (а железные опилки движет именно гравитационная составляющая единого поля) с увеличением расстояния. С увеличением расстояния начинают затухать высшие гармоники и превалируют уже низшие гармоники, что выражается у увеличении длины волны при удалении от магнита. Это видно по увеличению расстояния между выраженными максимумами напряженностей (GW1,GW2,GW3) гравитационных волн, в которых отсутствуют железные опилки, уносимые в зоны минимумов гравитационных напряженностей.

Выводы.

Гравитационным волнам, которые являются продольной составляющей единого поля, по силе выполнять все взаимодействия в Нашей вселенной. Других переносчиков взаимодействия во Вселенной, предположительно — нет.
С Земли события, связанные с наблюдением гравитационных волн (GW….) могут наблюдаться только в диапазоне очень низких частот волн, которые подвержены меньшему затуханию, но эти волны не передают в достаточной мере информацию о силе гравитационных волн, так как основные взаимодействия происходят на гораздо более высокой частоте, частоте колебаний физического вакуума и выше, которые подвержены сильному затуханию.

Заключение.

Большинство дефекта массы (3 массы Солнца) события GW150914 ушло на смещение массы физического вакуума в виде гравитационных волн на частоте (ω=160,4GGz)и выше, но
до нас гравитационная волна этой частоты не дошла по причине сильного затухания в (N= e 640000000 ) раз относительно частоты приема (ω=250 Gz.) и ослабления сигнала из-за разности частоты излучения и частоты приема (n=6,4 10раз).

Библиографический список:

1. Яворский В.М., Детлаф А.А. Справочник по физике, 2 изд., перераб., М. Наука, Главная редакция физико-математической литературы, 1985-512 с.
2. Пискунов Н.С. Дифференциальное и интегральное исчисление для ВТУЗОВ. т.1; 13-е издание; Наука; 1985. -560 c.;
3. Нечаев А.В. Взаимодействие вращающихся тел, SCI-ARTICLE.RU № 53(июль) 2020 г. [Электронный ресурс ], Режим доступа URL:http://sci-article.ru/stat.php?i=1601963571, (Дата обращения 17.04.2021);
4.Наблюдения гравитационных волн от слияния Двойной Черной дыры, Электронный ресурс, Режим доступа: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102 (Дата обращения:12.06.2021);

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.