Интерференционная картина гравитационно-волнового канала (гипотеза)

УДК 53.02

Введение.

По материалам статьи [1] Автор выдвинул гипотезу о том, что Н.А. Козырев в 1977 г. мог наблюдать явление гравитационно-волнового канала, предсказанного Стивеном Хокингом как «космическая струна». В данной статье Автор рассматривает гравитационно-волновой канал как интерференционную картину, которая образуется при наложении колебаний гравитационных волн излучаемых звездой Солнце и Землей.

Актуальность.

В настоящее время нет объяснения явления наблюдавшегося Н.А. Козыревым в 1977 г. в Крымской обсерватории. Объяснение, которое дал сам Н.А. Козырев подверглось обструкции и материалы по нему изъяты, но само явление наблюдения небесных тел в позиции «прошлого», «настоящего» и «будущего» требует объяснения.

Цели, задачи, материалы и методы.

Целью данной статьи является доказательство того, что все взаимодействия производятся гравитационными волнами. Задачей статьи является проведение мысленного эксперимента на предмет проверки гипотезы о том, что гравитационно-волновой канал является интерференционной картиной наложения гравитационных волн излучаемых взаимодействующими телами. Методом является мысленный эксперимент.

Научная новизна.

Для проведения мысленного эксперимента выполнен рисунок (рис. 1) на котором с разных направлений рассматривается гравитационно-волновой канал и анализируется: как должны появляться в поле зрения телескопов изображения звезды в положениях «прошлого», «настоящего» и «будущего». В качестве звезды взята звезда Солнце, находящаяся в зените над линией северного тропика (E-W). Время соответствует наблюдениям Д.К. Миллера в июле-августе 1925 года, которым соответствует скорость движения поверхности Земли меньше чем скорость движения поверхности Солнца. Это вызывает отставание изображения звезды («С») перед положением гравитационно-волнового канала. Если смотреть на звезду с северного направления, то в поле зрения телескопа (TN) позиция «С» должна быть слева от позиций «П», «Н», «Б».

канал

Рисунок 1. Вид на гравитационно-волновой канал в телескопы с разных направлений относительно северного тропика (E-W).

Если смотреть с южного направления под таким же углом места, то в поле зрения телескопа (TS) позиция «С» должна быть справа от позиций «П», «Н», «Б». Автор предполагает, что если рассматривать звезду с множества разных направлений, то позиции «П» и «Б» сольются, образуют внешний круг, а позиция «Н» составит круг внутренний. Это может подтвердить, что наблюдается интерференционная картина наложения гравитационных волн излучаемых двумя взаимодействующими телами.

Мысленный эксперимент позволяет надеяться на возможность проведения фактического эксперимента и доказательства или опровержения данной гипотезы. Фактический эксперимент необходимо провести и в положении Солнца в зените над южным тропиком. Объяснение необходимости этого пункта эксперимента представлено на (рис. 2).
канал

 

Рисунок 2. Положение каналов светового (С) и гравитационно-волнового (Н) в различные периоды года.
Свет движется в невозмущенном физическом вакууме и его траектория близка к прямолинейной (рис. 2). Гравитационно-волновой канал строится взаимодействием гравитационных волн вращающихся тел и его траектория имеет более сложный характер. Скорость света постоянна для данной плотности физического вакуума. Скорость гравитационных волн в гравитационно-волновом канале даже между Солнцем и Землей много больше чем скорость света. О скорости гравитационных волн в гравитационно-волновых каналах между сверхмассивными черными дырами можно пока только догадываться.

свет

 

Рисунок 3. Смена позиции светового луча по отношению к гравитационно-волновому каналу в зависимости от направления движения приливной волны на Солнце.

При годовом движении Земли вокруг Солнца (рис.3) скорость  вращения её поверхности является величиной переменной и она опережает скорость вращения поверхности Солнца при южном склонении Солнца (ωEW = ΩS + ωWW ) (приливная волна на Солнце (WW) направлена по движению поверхности Солнца) и отстает от скорости вращения поверхности Солнца при северном склонении Солнца (приливная волна на Солнце (WS) направлена против движению поверхности солнца) (ωES= Ω— ωWS ) . В соответствии с этим свет отстает от гравитационно-волнового канала зимой и опережает его летом.

И зимой и летом свет отстает в пространстве от базовой линии, соединяющей Землю и Солнце, а значит у системы Земля — Солнце есть движение в физическом вакууме по направлению к точке осеннего равноденствия. Это подтверждает гипотезу Д.К. Миллера, что направление движения Солнечной системы может быть определено с высокой точностью.
Явление поступательного движения Солнечной системы нашло отражение в «уравнении времени» [2] приведенному на (рис.4).

Уравнение времени — разница между средним солнечным временем (ССВ) и истинным солнечным временем (ИСВ), то есть УВ = ИСВ-ССВ .

По мнению Автора:

ИСВ –соответствует «настоящей» позиции «Н» Солнца.
ССВ — соответствует «световой» позиции «С» Солнца.
время

 

Рисунок 4. График уравнения времени (по «инвертированному варианту» , принятому в англоязычной литературе). График выше нуля — солнечные часы спешат, ниже нуля — солнечные часы отстают. (Нумерация событий соответствует рис.3)

Из графика (рис. 4) видно, что в течении года имеются четыре экстремума, меньшие два из которых (2,3) можно объяснить гравитационным влиянием третьего тела «Х», к которому притягивается Солнце, но от него отталкивается Земля. Это смещает положение больших экстремумов (1,4) от середины лета в сторону зимы. «Х»  предположительно, темная материя, которая  Землю отталкивает сильнее чем Солнце, потому что Солнце от нее в данный момент дальше. Эта материя окружает рукав Ориона с внешней стороны. гал

Рисунок 5. Представление структуры рукава Ориона галактики Млечный путь.

На рисунке (рис. 5) изображено представление Автором структуры рукава Ориона галактики Млечный путь. В центре галактики находится черная дыра Стрелец-А (5), окруженная гало из темной материи (DM(1)). Галактика с внешней стороны окружена темной энергией (DE (2)), которая увлекается барионной материей в рукав Ориона. Движение Солнечной системы (Солнца (3) и Земли (4)) происходит в направлении черной дыры Стрелец-А между движущимися встречно потоками темной материи и темной энергии. Солнце, как и вся барионная материя, раскручивается темной материей и тормозится темной энергией, за счет чего происходит увлечение темной энергии в сторону черной дыры.
Для взаимодействия Земли (е)и Солнца (s) формула приливного ускорения (7)[3] имеет вид:
2 * G*Ms [ Rs* ωs sin (ω s * t +φs) — Re *ωе sin (ωе * t+ φe)]
we=      ——————————————————————                                (1)                                                                  R3

где: G = 6,67 10 ^-11 m^3/ kg sec^2 -гравитационная постоянная;
Ms= 1,98 10 ^ 30 kg -масса Солнца;
R = 1,49 10^ 11 m -расстояние до Солнца;
Rs = 1,5 10^ 8 m -радиус Солнца;
Re = 6,37 10^ 6 m -радиус Земли;
Ts= 25*60*60*24 sec –период вращения Солнца;
Te = 60*60*24 sec – период вращения Земли;
ω s= 2π/ Ts — угловая скорость вращения Солнца;
ω e = 2π/ Te — угловая скорость вращения Земли ;
Аналогично для любого тела (Солнца или Земли) при взаимодействии с телом «Х»:
2 * G*Mx [ Rx* ωx sin (ω x * t +φx) — Re *ωе sin (ωе * t+ φe)]
we = ————————————————————————                (2)
(Rx — R)
2 * G*Mx [ Rx* ωx sin (ω x * t +φx) — Rs *ωs sin (ωs * t+ φs)]
ws  = ——————————————————————-                        (3)                                                                   Rx                                                                                                               
где:   Rx — расстояние от Солнца до тела «Х».
При проходе Землей «точки Весов» (ωе) принимает максимальное значение.
Так как числитель выражения (2) при взаимодействии с телом «Х» будет для Земли меньше чем для Солнца (3)
по причине того, что:  Re *ωе sin (ωе * t+ φe) >Rs *ωs sin (ωs * t+ φs), а указанные выражения являются вычитаемыми,
то и приливное ускорение Земли будет меньше чем у Солнца, что аналогично большему отталкиванию Земли приливными силами от тела «Х», находящегося в направлении «точки Весов». Автор предполагает, что тело «Х»- это быстро вращающееся тело, которое увлекает медленно вращающееся Солнце сильнее чем быстро вращающуюся Землю. Уравнения (2) и (3) имеют решение и можно определить  (Rx), пользуясь приливными ускорениями (we) и (ws) вычисленными из «уравнения времени».

Результаты, выводы.

Мысленный эксперимент приводит к пониманию, что гравитационно-волновой канал представляет интерференционную картину наложения гравитационных волн излучаемых взаимодействующими телами.

Мысленный эксперимент приводит к необходимости проведения натурального эксперимента по определению интерференционного происхождения гравитационно-волнового канала. Его исследование можно провести как телескопами с резисторным датчиком, так и интерферометрами.

Солнечная система имеет определенное направление движения в окружающем космическом пространстве, которое может быть вычислено с высокой точностью.

Заключение.

Для доказательства гипотезы об интерференционном происхождении гравитационно-волнового канала необходимо и достаточно произвести интерференционные наблюдения Солнца. Наблюдения лучше всего проводить в момент высокого склонения Солнца (и северного и южного) с позиций, которые от проекции зенита Солнца на поверхность Земли незначительно удалены на равные расстояния по меридиану. Вся надежда на астрономов-любителей, которые кустарным способом изготавливают простейшие интерферометры.  Особо следует предостеречь их о соблюдении мер безопасности при проведении наблюдений, так как гравитационные волны несут громадные энергии и прямое их наблюдение может вызвать поражение глаз, поэтому прямое их наблюдение необходимо исключить. Наиболее благоприятное время для наблюдений малых экстремумов  уравнения времени — май месяц для наблюдения  опережения солнечным светом гравитационно-волнового канала и июль-август для наблюдения отставания солнечного света от гравитационно-волнового канала. Зимние наблюдения больших экстремумов уравнения времени  на территории РФ малопродуктивны из-за низкой высоты Солнца.

 

Библиографический список:

1. Борисова Л.Б., Рабунский Д.Д. О чем рассказали звезды. [Электронный ресурс] – Режим доступа URL: http://www.delphis.ru/journal/article/o-chem-rasskazali-zvezdy (Дата обращения 20.03. 2022);
2. Википедия. Уравнение времени. [Электронный ресурс] —Режим доступа URL: https://ru.wikipedia.org/wiki/Уравнение_времени (Дата обращения 20.03. 2022);
3.Нечаев А.В. Теория приливной волны, [Электронный ресурс], Режим доступа URL: http://vprikusku.com/prilivnaya-volna/teoriya-prilivnoj-volny.html (дата обращения 19.03.2022)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.